• Energía Biomasa

    Es la cantidad de materia acumulada en un individuo, un nivel trófico, una población o un ecosistema.

    Biomasa, según el Diccionario de la Real Academia Española, tiene dos acepciones:

    1. f. Biol. Materia total de los seres que viven en un lugar determinado, expresada en peso por unidad de área o de volumen.

    2. f. Biol. Materia orgánica originada en un proceso biológico, espontáneo o provocado, utilizable como fuente de energía.1

    La primera acepción se utiliza habitualmente en Ecología. La segunda acepción, más restringida, se refiere a la biomasa «útil» en términos energéticos formales: las plantas transforman la energía radiante del Sol en energía química a través de la fotosíntesis, y parte de esa energía química queda almacenada en forma de materia orgánica; la energía química de la biomasa puede recuperarse quemándola directamente o transformándola en combustible.

    Un equívoco muy común es utilizar «biomasa» como sinónimo de la energía útil que puede extraerse de ella, lo que genera bastante confusión debido a que la relación entre la energía útil y la biomasa es muy variable y depende de innumerables factores. Para empezar, la energía útil puede extraerse por combustión directa de biomasa (madera, excrementos animales, etc), pero también de la combustión de combustibles obtenidos de ella mediante transformaciones físicas o químicas (gas metano de los residuos orgánicos, por ejemplo), procesos en los que «siempre» se pierde algo de la energía útil original. Además, la biomasa puede ser útil directamente como materia orgánica en forma de abono y tratamiento de suelos (por ejemplo, el uso de estiércol o de coberturas vegetales). Y por supuesto no puede olvidarse su utilidad más común: servir de alimento a muy diversos organismos, la humanidad incluida (véase «cadena trófica»).

    La biomasa de la madera, residuos agrícolas y estiércol continúa siendo una fuente principal de energía y materia útiles en países poco industrializados.

    En la primera acepción, es la masa total de toda la materia que forma un organismo, una población o un ecosistema y tiende a mantenerse más o menos constante.

    Su medida es difícil en el caso de los ecosistemas. Por lo general, se da en unidades de masa por cada unidad de superficie. Es frecuente medir la materia seca (excluyendo el agua). En la pluviselva del Amazonas puede haber una biomasa de plantas de 1.100 toneladas por hectárea de tierra.

    Pero mucho más frecuente es el interés en la «producción neta» de un ecosistema, es decir, la nueva materia orgánica generada en la unidad de superficie a lo largo de una unidad tiempo, por ejemplo, en una hectárea y a lo largo de un año. En teoría, en un ecosistema que ha alcanzado el clímax la producción neta es nula o muy pequeña: el ecosistema simplemente renueva su biomasa sin crecimiento a la vez que la biomasa total alcanza su valor máximo. Por ello la biomasa es uno de los atributos más relevantes para caracterizar el estado de un ecosistema o el proceso de sucesión ecológica en un territorio (véase, por ejemplo, Odum, 1969).
     
    Energía Biomasa

    En términos energéticos, se puede utilizar directamente, como es el caso de la leña, o indirectamente en forma de los biocombustibles (nótese que el etanol puede obtenerse del vino por destilación): «biomasa» debe reservarse para denominar la materia prima empleada en la fabricación de biocombustibles.

    La Biomasa podría proporcionar energías sustitutivas a los combustibles fósiles, gracias a agrocombustibles líquidos (como el biodiesel o el bioetanol), gaseosos (gas metano) o sólidos (leña), pero todo depende de que no se emplee más biomasa que la producción neta del ecosistema explotado, de que no se incurra en otros consumos de combustibles en los procesos de transformación, y de que la utilidad energética sea la más oportuna frente a otros usos posibles (como abono y alimento).

  • Energía entre vecinos:

    Opinión del Presidente de AUGPEE.

    Ing. Fraschini, presidente de AUGPEE, brindó su opinión tras los anuncios realizados por los mandatarios de Uruguay y Argentina en materia energética.

  • Energía Eólica

    Obtenida a partir del viento, es decir, la energía cinética generada por efecto de las corrientes de aire, y que es convertida en otras formas útiles de energía para las actividades humanas. (El término eólico viene del latín Aeolicus, perteneciente o relativo a Eolo, dios de los vientos en la mitología griega).

    En la actualidad, la energía eólica es utilizada principalmente para producir electricidad mediante aerogeneradores, conectados a las grandes redes de distribución de energía eléctrica. Los parques eólicos construidos en tierra suponen una fuente de energía cada vez más barata, competitiva o incluso más barata en muchas regiones que otras fuentes de energía convencionales.

    Pequeñas instalaciones eólicas pueden, por ejemplo, proporcionar electricidad en regiones remotas y aisladas que no tienen acceso a la red eléctrica, al igual que hace la energía solar fotovoltaica. Las compañías eléctricas distribuidoras adquieren cada vez en mayor medida el exceso de electricidad producido por pequeñas instalaciones eólicas domésticas. El auge de la energía eólica ha provocado también la planificación y construcción de parques eólicos marinos, situados cerca de las costas. La energía del viento es más estable y fuerte en el mar que en tierra, y los parques eólicos marinos tienen un impacto visual menor, pero los costes de construcción y mantenimiento de estos parques son considerablemente mayores.

    La energía eólica es un recurso abundante, renovable, limpio y ayuda a disminuir las emisiones de gases de efecto invernadero al reemplazar fuentes de energía a base de combustibles fósiles, lo que la convierte en un tipo de energía verde. El impacto ambiental de este tipo de energía es además, generalmente, menos problemático que el de otras fuentes de energía.

    La energía del viento es bastante estable y predecible a escala anual, aunque presenta significativas variaciones a escalas de tiempo menores.

    Al incrementarse la proporción de energía eólica producida en una determinada región o país, se hace imprescindible establecer una serie de mejoras en la red eléctrica local.

    Diversas técnicas de control energético, como una mayor capacidad de almacenamiento de energía, una distribución geográfica amplia de los aerogeneradores, la disponibilidad de fuentes de energía de respaldo, la posibilidad de exportar o importar energía a regiones vecinas o la reducción de la demanda cuando la producción eólica es menor, pueden ayudar a mitigar en gran medida estos problemas.

    Adicionalmente, la predicción meteorológica permite a los gestores de la red eléctrica estar preparados frente a las previsibles variaciones en la producción eólica que puedan tener lugar a corto plazo.

  • Energía Hidroeléctrica

    La Energía hidroeléctrica es electricidad generada aprovechando la energía del agua en movimiento. La lluvia o el agua de deshielo, provenientes normalmente de colinas y montañas, crean arroyos y ríos que desembocan en el océano. La energía que generan esas corrientes de agua puede ser considerable, como sabe cualquiera que haya hecho descenso de rápidos.

    Este tipo de energía lleva años explotándose.

    Los agricultores, desde la Grecia antigua han utilizado molinos de agua para moler trigo y hacer harina. Localizados en los ríos, los molinos de agua recogen el agua en movimiento en cubos situados alrededor del molino. La energía cinética del agua en movimiento gira el molino y se convierte en la energía mecánica que mueve el molino.

    A finales del siglo XIX, la energía hidroeléctrica se convirtió en una fuente para generar electricidad. La primera central hidroeléctrica se construyó en Niagara Falls en 1879. En 1881, las farolas de la ciudad de Niagara Falls funcionaban mediante energía hidroeléctrica. En 1882, la primera central hidroeléctrica del mundo comenzó a funcionar en Estados Unidos en Appleton, Wisconsin.

    Una central hidroeléctrica clásica es un sistema que consiste en tres partes: una central eléctrica en la que se produce la electricidad; una presa que puede abrirse y cerrarse para controlar el paso del agua; y un depósito en que se puede almacenar agua. El agua de detrás de la presa fluye a través de una entrada y hace presión contra las palas de una turbina, lo que hace que éstas se muevan.

    La turbina hace girar un generador para producir la electricidad. La cantidad de electricidad que se puede generar depende de hasta dónde llega el agua y de la cantidad de ésta que se mueve a través del sistema. La electricidad puede transportarse mediante cables eléctricos de gran longitud hasta casas, fábricas y negocios.

    La energía hidroeléctrica proporciona casi un quinto de la electricidad de todo el mundo. Genera electricidad de forma más barata en la actualidad.

    Esta fuente de energía es limpia y se renueva cada año a través del deshielo y las precipitaciones.

    Además, este tipo de energía es fácilmente accesible, ya que los ingenieros pueden controlar la cantidad de agua que pasa a través de las turbinas para producir electricidad según sea necesario. Lo que es más, los depósitos pueden ofrecer oportunidades recreativas, tales como zonas de baño y de paseo en barca.

  • Energía Solar

    La Energía Solar es una fuente de energía de origen renovable, obtenida a partir del aprovechamiento de la radiación electromagnética procedente del Sol.

    La radiación solar que alcanza la Tierra ha sido aprovechada por el ser humano desde la Antigüedad, mediante diferentes tecnologías que han ido evolucionando con el tiempo desde su concepción. En la actualidad, el calor y la luz del Sol puede aprovecharse por medio de captadores como células fotovoltaicas, helióstatos o colectores térmicos, que pueden transformarla en energía eléctrica o térmica. Es una de las llamadas energías renovables o energías limpias, que pueden ayudar a resolver algunos de los problemas más urgentes que afronta la humanidad.

    Las diferentes tecnologías solares se clasifican en pasivas o activas según cómo capturan, convierten y distribuyen la energía solar. Las tecnologías activas incluyen el uso de paneles fotovoltaicos y colectores térmicos para recolectar la energía. Entre las técnicas pasivas, se encuentran diferentes técnicas enmarcadas en la arquitectura bioclimática: la orientación de los edificios al Sol, la selección de materiales con una masa térmica favorable o que tengan propiedades para la dispersión de luz, así como el diseño de espacios mediante ventilación natural.

    En 2011, la Agencia Internacional de la Energía se expresó así:

    "El desarrollo de tecnologías solares limpias, baratas e inagotables supondrá un enorme beneficio a largo plazo.

    Aumentará la seguridad energética de los países mediante el uso de una fuente de energía local, inagotable, y lo más importante, independientemente de importaciones, aumentará la sostenibilidad, reducirá la contaminación, disminuirá los costes de la mitigación del cambio climático, y evitará la subida excesiva de los precios de los combustibles fósiles. Estas ventajas son globales. De esta manera, los costes para su incentivo y desarrollo deben ser considerados inversiones; deben ser realizadas de forma correcta y ampliamente difundidas".

    La fuente de energía solar más desarrollada en la actualidad es la energía solar fotovoltaica. Según informes de la organización ecologista Greenpeace, la energía solar fotovoltaica podría suministrar electricidad a dos tercios de la población mundial en 2030.

    Actualmente, y gracias a los avances tecnológicos, la sofisticación y la economía de escala, el coste de la energía solar fotovoltaica se ha reducido de forma constante desde que se fabricaron las primeras células solares comerciales, aumentando a su vez la eficiencia, y su coste medio de generación eléctrica ya es competitivo con las fuentes de energía convencionales en un creciente número de regiones geográficas, alcanzando la paridad de red. Otras tecnologías solares, como la energía solar termoeléctrica está reduciendo sus costes también de forma considerable.

  • Gas Natural

    El Gas natural es una de las varias e importantes fuentes de energía no renovables formada por una mezcla de gases ligeros que se encuentra en yacimientos independientes de gas o en yacimientos de petróleo, disuelto o asociado con el petróleo (acumulación de plancton marino) o en depósitos de carbón.

    Aunque su composición varía en función del yacimiento del que se saca, está compuesto principalmente por metano en cantidades que comúnmente pueden superar el 90 o 95 % (p. ej., el gas no-asociado del pozo West Sole en el Mar del Norte), y suele contener otros gases como nitrógeno, ácido sulfhídrico, helio y mercaptanos.

    Como ejemplo de contaminantes cabe mencionar el gas no-asociado de Kapuni (NZ) que contiene hasta 49 % de CO2. Como fuentes adicionales de este recurso natural, se están investigando los yacimientos de hidratos de metano que, según estimaciones, pueden suponer una reserva energética muy superiores a las actuales de gas natural.  Puede obtenerse también con procesos de descomposición de restos orgánicos (basuras, vegetales - gas de pantanos) en las plantas de tratamiento de estos restos (depuradoras de aguas residuales urbanas, plantas de procesado de basuras, de desechos orgánicos animales, etc.). El gas obtenido se denomina biogás.

    Algunos de los gases que forman parte del gas natural cuando es extraído se separa de la mezcla porque no tienen capacidad energética (nitrógeno o CO2) o porque pueden depositarse en las tuberías usadas para su distribución debido a su alto punto de ebullición. Si el gas fuese criogénicamente licuado para su almacenamiento, el dióxido de carbono (CO2) solidificaría interfiriendo con el proceso criogénico. El CO2 puede ser determinado por los procedimientos ASTM D 1137 o ASTM D 1945.
     
    Gas Natural

    Algunos de los gases que forman parte del gas natural cuando es extraído se separa de la mezcla porque no tienen capacidad energética (nitrógeno o CO2) o porque pueden depositarse en las tuberías usadas para su distribución debido a su alto punto de ebullición.

    Si el gas fuese criogénicamente licuado para su almacenamiento, el dióxido de carbono (CO2) solidificaría interfiriendo con el proceso criogénico. El CO2 puede ser determinado por los procedimientos ASTM D 1137 o ASTM D 1945.

  • MeloWind el nuevo parque eólico de Uruguay

    Este domingo, se realizó la conexión del parque eólico MeloWind, en Cerro Largo, que abarca 21 hectáreas de extensión y tiene una potencia de 50 megavatios para suministrar energía a la empresa de energía uruguaya UTE tras el contrato firmado con la filial en Uruguay de la empresa italiana Enel-Green Power.

  • Plantas de energía

     A partir de biomasa enfrentan "tormenta perfecta" Las Plantas de generación de energía a partir de la quema de trozos de madera (chip), cascara de arroz u otros residuos agrícolas o forestales atraviesan una situación comprometida. El negocio no dio los resultados que esperaban cuando se instalaron y hoy trabajan con ganancias bajas o nulas.

  • Primera autorización a privado para exportar energía

    Ministerio de Industria habilitó a firma Ventus vender a la Argentina.

  • Soplan nuevos vientos...

    ASTIDEY S.A inaugura su parque eólico "Talas del Maciel I"

  • Un debate necesario.

    La Ley Nº 16.832 entre otras cosas, tiene por objetivo establecer que la generación de energía no es un servicio público, y que por lo tanto pasa a ser de libre competencia.

Por consultas y/o asociarse a AUGPEE

Contacto